PostgreSQLLa base de données la plus sophistiquée au monde.

Version anglaise

14.2. Statistiques utilisées par le planificateur

14.2.1. Statistiques mono-colonne

Comme nous avons vu dans la section précédente, le planificateur de requêtes a besoin d'estimer le nombre de lignes récupérées par une requête pour faire les bons choix dans ses plans de requêtes. Cette section fournit un aperçu rapide sur les statistiques que le système utilise pour ces estimations.

Un élément des statistiques est le nombre total d'entrées dans chaque table et index, ainsi que le nombre de blocs disque occupés par chaque table et index. Cette information est conservée dans la table pg_class sur les colonnes reltuples et relpages. Nous pouvons la regarder avec des requêtes comme celle-ci :

              SELECT relname, relkind, reltuples, relpages
FROM pg_class
WHERE relname LIKE 'tenk1%';

       relname        | relkind | reltuples | relpages
----------------------+---------+-----------+----------
 tenk1                | r       |     10000 |      358
 tenk1_hundred        | i       |     10000 |       30
 tenk1_thous_tenthous | i       |     10000 |       30
 tenk1_unique1        | i       |     10000 |       30
 tenk1_unique2        | i       |     10000 |       30
(5 rows)

Ici, nous pouvons voir que tenk1 contient 10000 lignes, comme pour ses index, mais que les index sont bien plus petits que la table (ce qui n'est pas surprenant).

Pour des raisons d'efficacité, reltuples et relpages ne sont pas mises à jour en temps réel, et contiennent alors souvent des valeurs un peu obsolètes. Elles sont mises à jour par les commandes VACUUM, ANALYZE et quelques commandes DDL comme CREATE INDEX. Une opération VACUUM ou ANALYZE qui ne parcourt pas la table entièrement (ce qui est le cas le plus fréquent) augmentera de façon incrémentale la valeur de reltuples sur la base de la partie de la table qu'elle a parcouru, résultant en une valeur approximative. Dans tous les cas, le planificateur mettra à l'échelle les valeurs qu'il aura trouvées dans pg_class pour correspondre à la taille physique de la table, obtenant ainsi une approximation plus proche de la réalité.

La plupart des requêtes ne récupère qu'une fraction des lignes dans une table à cause de clauses WHERE qui restreignent les lignes à examiner. Du coup, le planificateur a besoin d'une estimation de la sélectivité des clauses WHERE, c'est-à-dire la fraction des lignes qui correspondent à chaque condition de la clause WHERE. L'information utilisée pour cette tâche est stockée dans le catalogue système pg_statistic. Les entrées de pg_statistic sont mises à jour par les commandes ANALYZE et VACUUM ANALYZE et sont toujours approximatives même si elles ont été mises à jour récemment.

Plutôt que de regarder directement dans pg_statistic, il vaut mieux voir sa vue pg_stats lors d'un examen manuel des statistiques. pg_stats est conçu pour être plus facilement lisible. De plus, pg_stats est lisible par tous alors que pg_statistic n'est lisible que par un superutilisateur (ceci empêche les utilisateurs non privilégiés d'apprendre certains choses sur le contenu des tables appartenant à d'autres personnes à partir des statistiques. La vue pg_stats est restreinte pour n'afficher que les lignes des tables lisibles par l'utilisateur courant). Par exemple, nous pourrions lancer :

SELECT attname, inherited, n_distinct,
       array_to_string(most_common_vals, E'\n') as most_common_vals
FROM pg_stats
WHERE tablename = 'road';

 attname | inherited | n_distinct |          most_common_vals
---------+-----------+------------+------------------------------------
 name    | f         |  -0.363388 | I- 580                        Ramp+
         |           |            | I- 880                        Ramp+
         |           |            | Sp Railroad                       +
         |           |            | I- 580                            +
         |           |            | I- 680                        Ramp
 name    | t         |  -0.284859 | I- 880                        Ramp+
         |           |            | I- 580                        Ramp+
         |           |            | I- 680                        Ramp+
         |           |            | I- 580                            +
         |           |            | State Hwy 13                  Ramp
(2 rows)
   

Notez que deux lignes sont affichées pour la même colonne, une correspondant à la hiérarchie d'héritage complète commençant à la table road (inherited=t), et une autre incluant seulement la table road elle-même (inherited=f).

Les informations stockées dans pg_statistic par ANALYZE, en particulier le nombre maximum d'éléments dans les tableaux most_common_vals et histogram_bounds pour chaque colonne, peut être défini colonne par colonne en utilisant la commande ALTER TABLE SET STATISTICS ou globalement en initialisant la variable de configuration default_statistics_target. La limite par défaut est actuellement de 100 entrées. Augmenter la limite pourrait permettre des estimations plus précises du planificateur, en particulier pour les colonnes ayant des distributions de données irrégulières, au prix d'un plus grand espace consommé dans pg_statistic et d'un temps plus long pour calculer les estimations. En revanche, une limite plus basse pourrait être suffisante pour des colonnes avec des distributions de données simples.

Le Chapitre 68, Comment le planificateur utilise les statistiques donne plus de détails sur l'utilisation des statistiques par le planificateur.

14.2.2. Statistiques étendues

Il est habituel de voire des requêtes lentes tourner avec de mauvais plans d'exécution car plusieurs colonnes utilisées dans les clauses de la requête sont corrélées. L'optimiseur part normalement du principe que toutes les conditions sont indépendantes les unes des autres, ce qui est faux quand les valeurs des colonnes sont corrélées. Les statistiques classiques, du fait qu'il s'agit par nature de statistique sur une seule colonne, ne peuvent pas capturer d'information sur la corrélation entre colonnes. Toutefois, PostgreSQL™ a la possibilité de calculer des statistiques multivariées, qui peuvent capturer une telle information.

Comme le nombre de combinaisons de colonnes est très important, il n'est pas possible de calculer les statistiques multivariées automatiquement. À la place, des objets statistiques étendus, plus souvent appelés simplement objets statistiques, peuvent être créés pour indiquer au serveur qu'il faut obtenir des statistiques sur un ensemble intéressant de colonnes.

Les objets statistiques sont crées en utilisant la commande CREATE STATISTICS(7). La création de tels objets crée seulement une entrée dans le catalogue pour exprimer l'intérêt dans cette statistique. La vraie récupération de données est effectuée par ANALYZE (soit une commande manuelle, soit une analyse automatique en tâche de fond). Les valeurs collectées peuvent être examinées dans le catalogue pg_statistic_ext.

ANALYZE calcule des statistiques étendues basées sur le même ensemble de lignes de la table qu'il utilise pour calculer les statistiques standard sur une seule colonne. Puisque la taille d'échantillon peut être augmentée en augmentant la cible de statistiques de la table ou de n'importe laquelle de ses colonnes (comme décrit dans la section précédente), une plus grande cible de statistiques donnera normalement des statistiques étendues plus précises, mais nécessitera également plus de temps pour les calculer.

La section suivante décrit les types de statistiques étendues qui sont actuellement supportées.

14.2.2.1. Dépendances fonctionnelles

Le type le plus simple de statistiques étendues trace les dépendances fonctionnelles , un concept utilisé dans les définitions des formes normales des bases de données. On dit qu'une colonne b est fonctionnellement dépendante d'une colonne a si la connaissance de la valeur de a est suffisante pour déterminer la valeur de b, et donc qu'il n'existe pas deux lignes ayant la même valeur de a mais avec des valeurs différentes de b. Dans une base de données complètement normalisée, les dépendances fonctionnelles ne devraient exister que sur la clé primaire et les superclés. Toutefois, dans la pratique beaucoup d'ensembles de données ne sont pas totalement normalisés pour de nombreuses raisons ; une dénormalisation intentionnelle pour des raisons de performances est un exemple courant. Même dans une base de données totalement normalisée, il peut y avoir une corrélation partielle entre des colonnes, qui peuvent être exprimées comme une dépendance fonctionnelle partielle.

L'existence de dépendances fonctionnelles a un impact direct sur la précision de l'estimation pour certaines requêtes. Si une requête contient des conditions à la fois sur des colonnes indépendantes et sur des colonnes dépendantes, les conditions sur les colonnes dépendantes ne réduisent plus la taille du résultat ; mais sans la connaissance de cette dépendance fonctionnelle, l'optimiseur de requêtes supposera que les conditions sont indépendantes, avec pour résultat une taille de résultat sous-estimée.

Pour informer l'optimiseur des dépendances fonctionnelles, ANALYZE peut collecter des mesures sur des dépendances entre colonnes. Évaluer le degré de dépendance entre tous les ensembles de colonnes aurait un coût prohibitif, c'est pourquoi la collecte de données est limitée aux groupes de colonnes apparaissant ensemble dans un objet statistiques défini avec l'option dependencies. Il est conseillé de ne créer des dépendences statistiques que pour des groupes de colonnes fortement corrélées, pour éviter un surcoût à la fois dans ANALYZE et plus tard lors de la planification de requête.

Voici un exemple de collecte de statistiques fonctionnellement dépendantes :

CREATE STATISTICS stts (dependencies) ON zip, city FROM zipcodes;

ANALYZE zipcodes;

SELECT stxname, stxkeys, stxdependencies
  FROM pg_statistic_ext
  WHERE stxname = 'stts';
 stxname | stxkeys |             stxdependencies
---------+---------+------------------------------------------
 stts    | 1 5     | {"1 => 5": 1.000000, "5 => 1": 0.423130}
(1 row)

On peut voir ici que la colonne 1 (zip code) détermine complètement la colonne 5 (city) et que donc le coefficient est 1.0, alors que la ville ne détermine le code postal qu'environ 42% du temps, ce qui veut dire qu'il y a beaucoup de villes (58%) qui sont représentées par plus d'un seul code postal.

Lors du calcul de la sélectivité d'une requête impliquant des colonnes fonctionnellement dépendantes, le planificateur ajoute l'estimation de sélectivité par condition en utilisant les coefficients de dépendance afin de ne pas produire de résultats sous estimé.

14.2.2.1.1. Limites des Dépendances Fonctionnelles

Les dépendances fonctionnelles sont pour le moment uniquement appliquées pour les conditions sur une simple égalité entre une colonne et une valeur constante. Elles ne sont pas utilisées pour améliorer l'estimation sur les conditions d'égalité entre deux colonnes ou la comparaison d'une colonne avec une expression, ni pour les clauses d'intervalle, LIKE ou tout autre type de condition.

Lors d'une estimation avec des dépendances fonctionnelles, l'optimiseur part du principe que les conditions sur les colonnes impliquées sont compatibles et donc redondantes. Si elles sont incompatibles, l'estimation correcte devrait être zéro ligne, mais cette possibilité n'est pas envisagée. Par exemple, dans une requête telle que

SELECT * FROM zipcodes WHERE city = 'San Francisco' AND zip = '94105';

l'optimiseur négligera la clause city puisqu'elle ne changera pas la sélectivité, ce qui est correct. Par contre, il fera la même supposition pour

SELECT * FROM zipcodes WHERE city = 'San Francisco' AND zip = '90210';

bien qu'il n'y ait en réalité aucune ligne satisfaisant cette requête. Toutefois, les statistiques de dépendances fonctionnelles ne fournissent pas suffisamment d'information pour en arriver à cette conclusion.

Pour beaucoup de situations pratiques, cette supposition est généralement correcte ; par exemple, l'application pourrait contenir une interface graphique qui n'autorise que la sélection de villes et code postaux compatibles pour l'utilisation dans une requête. Mais si ce n'est pas le cas, les dépendances fonctionnelles pourraient ne pas être une solution viable.

14.2.2.2. Nombre N-Distinct multivarié

Les statistiques sur une seule colonne stockent le nombre de valeurs distinctes pour chaque colonne. Les estimations du nombre de valeurs distinctes combinant plus d'une colonne (par exemple, pour GROUP BY a, b) sont souvent fausses quand l'optimiseur ne dispose que de données statistiques par colonne, avec pour conséquence le choix de mauvais plans.

Afin d'améliorer de telles estimations, ANALYZE peut collecter des statistiques n-distinct pour des groupes de colonne. Comme précédemment, il n'est pas envisageable de le faire pour tous les regroupements possibles, ainsi les données ne sont collectées que pour ceux apparaissant ensemble dans un objet statistiques défini avec l'option ndistinct. Des données seront collectées pour chaque combinaison possible de deux colonnes ou plus dans l'ensemble de colonnes listées.

En continuant avec l'exemple précédent, le nombre n-distinct dans une table de code postaux pourrait ressember à ceci :

CREATE STATISTICS stts2 (ndistinct) ON zip, state, city FROM zipcodes;

ANALYZE zipcodes;

SELECT stxkeys AS k, stxndistinct AS nd
  FROM pg_statistic_ext
  WHERE stxname = 'stts2';
-[ RECORD 1 ]--------------------------------------------------------
k  | 1 2 5
nd | {"1, 2": 33178, "1, 5": 33178, "2, 5": 27435, "1, 2, 5": 33178}
(1 row)

Cela indique qu'il y a trois combinaisons de colonnes qui ont 33178 valeurs distincte : le code postal et l'état; le code postal et la ville; et le code postal, la ville et l'état (le fait qu'ils soient tous égaux est attendu puisque que le code postal seul est unique dans cette table). D'un autre côté, la combinaison de la ville et de l'état n'a que 27435 valeurs distinctes.

Il est conseillé de créer des objets statistiques ndistinct uniquement sur les combinaisons de colonnes réellement utilisées pour des regroupement, et pour lesquelles les mauvaises estimations du nombre de groupe a pour conséquence de mauvais plans. Sinon le temps consommé par ANALYZE serait gaspillé.